

Radiative damping and electron beam dynamics in plasma-based accelerators

P. Michel, E. Esarey, C.B. Schroeder, B.A. Shadwick, W.P. Leemans LOASIS Program – Lawrence Berkeley National Laboratory

Summary: full analytical description of the radiation damping in plasma-based accelerators.

Results for an e-beam:

$$\langle \gamma \rangle = \frac{\langle \gamma \rangle_0}{1 + \bar{\nu}_{\gamma} t}.$$

$$\langle \gamma \rangle = \frac{\langle \gamma \rangle_0}{1 + \bar{\nu}_{\gamma} t}$$
 $\epsilon_{Nx} \simeq \frac{\Omega \langle \gamma \rangle_0}{c} \sigma_{x0}^2 \left(1 - \frac{5}{4} \tau \alpha^4 \langle \gamma \rangle_0 \sigma_{x0}^2 t \right)$

$$\frac{\sigma_{\gamma}^2}{\left\langle\gamma\right\rangle^2} \simeq \frac{\sigma_{\gamma 0}^2}{\left\langle\gamma\right\rangle_0^2} + \frac{1}{2}\tau_R^2 c^4 K^8 \left(\left\langle\gamma\right\rangle_0^2 \sigma_{x0}^4 + \frac{\sigma_{ux0}^4}{K^4}\right) t^2$$

Example: damping length in the blow-out regime: L_d [m] = $c/v_v \sim n_e^{-2} x_m^{-2} E_b^{-1}$ \approx <u>6.8 m</u> for n_e=3.10¹⁷ cm⁻³, x_m=10 µm (osc. amplitude) and E_b=42 GeV \rightarrow v_{ν} t \sim 17% for 113 cm plasma

Main conclusion: radiation effect can be significant with beam-driven experiments parameters (laser-driven: effects typically negligible); main effect: energy spread. Importance of the damping rate v_{γ} : energy decreases as $\sim v_{\gamma}t$, $\sigma_{\gamma}/\langle\gamma\rangle$ increases (asymptotically) as $\sim v_{\nu}t$, emittance decreases as $\sim v_{\nu}t$

Solution: decrease plasma density (?)

Reduces radiation: small energy loss and small increase of energy spread; but implies a compromise with accelerating gradient (larger at higher densities)